Baruch MFE 三面面经 [2015-02-15]
作者:Sylvia622
日期:2015-03-23
三面是professor rados,人很好很好~
1,从0到正无穷,exp(-x^2/2)积分
2, 指数分布的pdf,mean,variance
3. 经典问题,对角线都是0,其他是1的3*3矩阵的特征值
4. 经典问题,s=100,一半可能变120,一半可能变90,k=110,求c和p
5.一个骰子,每个面至少被投出一次需要投多少次?
祝大家都有很好的ad~

京公网安备11010202008513号
帅哥你好。
我就是发个问题确认一下。
帅哥再见。:time:
美女你好。
First throw, we get a number. Then the probability of getting a “new” number would be 5/6. It follows a geometric distribution pattern. Then the expectation would be 6/5. After hitting that “new ” number, the probability of getting the next “new” number would be 4/6. Again, the expectation of that is 6/4. We keep adding up until 6/1.
Note that we assume each event is the occurrence of a “new” number. They are not independent. But the formula E(X+Y) = E(X) + E(Y) does not require independency.
对了,请问一下楼主,最后一题是几何分布吧?只不过X的 support从6 开始?support(x)=(6,7,.....)?
搞混了,那个生小孩儿一男一女那个才是几何分布从2开始。。。
谢谢分享